Recent Publications

30. Boyd C, and Seed KD. A phage satellite manipulates the viral DNA packaging motor to inhibit phage and promote satellite spread. April 22, 2024. bioRxiv 590561 [Preprint].

29. Rakibova Y*, Dunham DT*, Seed KD and Freddolino PL. Nucleoid-associated proteins shape the global protein occupancy and transcriptional landscape of a clinical isolate of Vibrio cholerae. January 1, 2024. bioRxiv 573743 [Preprint].

28. Patel KM and Seed KD. Sporadic phage defense in epidemic Vibrio cholerae mediated by the toxin-antitoxin system DarTG is countered by a phage-encoded antitoxin mimic. December 15, 2023. bioRxiv 571748 [Preprint].

27. Netter Z, Dunham DT and Seed KD. 2023. Adaptation to bile and anaerobicity limits Vibrio cholerae phage adsorption. mBio. 26:e0198523. (Link).

26. Barth ZK*, Dunham DT* and Seed KD. 2023. Nuclease genes occupy boundaries of genetic exchange between bacteriophages. NAR Genomics and Bioinformatics. (Link).

25. Boyd CM, Subramanian S, Dunham DT, Parent KN and Seed KD. 2024. A Vibrio cholerae viral satellite maximizes its spread and blocks phage by remodeling hijacked phage coat proteins into small capsids. eLife. (Link)

Notable Media coverage:

  • Research Highlight: Du Toit, A. A small coat for satellites. Nat Rev Microbiol (2023). (Link)

24. Dunham DT, Angermeyer A and Seed KD. 2023. The RNA-RNA interactome between a phage and its satellite virus reveals a small RNA that differentially regulates gene expression across both genomes. Molecular Microbiology. 119:515-533. (Link)

23. Nguyen MHT, Netter Z, Angermeyer A and Seed KD. 2022. A phage weaponizes a satellite recombinase to subvert viral restriction. Nucleic Acids Research. 50:11138-11153. (Link)

22. Dunham D, Angermeyer A and Seed KD. The RNA-RNA interactome between a phage and its satellite virus reveals a small RNA differentially regulates gene expression across both genomes. Biorxiv [Preprint]. April 8, 2022. (Link)

21. Angermeyer A, Hays SG, Nguyen MHT, Johura FT, Sultana M, Alam M and Seed KD. 2022. Evolutionary sweeps of subviral parasites and their phage host bring unique parasite variants and disappearance of a phage CRISPR-Cas system. mBio. 13(1):e0308821. (Link)

20. LeGault KN, Barth ZK, DePaola P and Seed KD. 2022. A phage parasite deploys a nicking nuclease effector to inhibit replication of its viral host. Nucleic Acids Research. gkac002. (Link)

19. Boyd CM, Angermeyer A, Hays SG, Barth ZK, Patel KM and Seed KD. 2021. Bacteriophage ICP1: A persistent predator of Vibrio cholerae. Annual Review of Virology. 8:285-304. (Link) [Review]

18. LeGault KN, Hays SG, Angermeyer A, McKitterick AC, Johura FT, Sultana M, Ahmed T, Alam M and Seed KD. 2021. Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts. Science. 373, eabg2166. (Link) (Link to open access preprint)

Notable Media coverage:

  • Perspective: Meaden S, and Fineran PC. 2021. Bacterial defense islands limit viral attack. Science 374,399-400. (Link)

17. Barth ZK, Nguyen MHT and Seed KD. 2021. A chimeric nuclease substitutes a phage CRISPR-Cas system to provide sequence specific immunity against subviral parasites. eLife. 10:e68339. (Link)

16. Netter Z, Boyd CM, Silvas TV and Seed KD. 2021 A phage satellite tunes inducing phage gene expression using a domesticated endonuclease to balance inhibition and virion hijacking. Nucleic Acids Research. 49:4386-4401. (Link)

15. Barth ZK, Netter Z, Angermeyer A, Bhardwaj P and Seed KD. 2020. A family of viral satellites manipulates invading virus gene expression and affects cholera toxin mobilization. mSystems. 5:e00358-20. (Link)

14. Hays SG and Seed KD. 2020. Dominant Vibrio cholerae phage exhibits lysis inhibition sensitive to disruption by a defensive phage satellite. eLife. 9:e53200. (Link)

13. Barth ZK, Silvas TV, Angermeyer A and Seed KD. 2020. Genome replication dynamics of a bacteriophage and its satellite reveal strategies for parasitism and viral restriction. Nucleic Acids Research. 48:249-263. (Link)

12. McKitterick AC, Hays SG, Johura FT, Alam M and Seed KD. 2019. Viral satellites exploit phage proteins to escape degradation of the bacterial host chromosome. Cell Host & Microbe. 26:504-514. (Link)

11. McKitterick AC, LeGault KN, Angermeyer A, Alam M and Seed, KD. 2019. Competition between mobile genetic elements drives optimization of a phage-encoded CRISPR-Cas system: Insights from a natural arms-race. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 374:20180089. (Link)

10. Angermeyer A, Das MM, Singh DV and Seed KD. 2018. Analysis of 19 highly conserved Vibrio cholerae bacteriophages isolated from environmental and patient sources over a twelve-year period. Viruses. 10:299. (Link)

9. McKitterick AC and Seed KD. 2018. Anti-phage islands force their target phage to directly mediate island excision and spread. Nature Communications. 9:2348. (Link)

8. O’Hara BJ, Barth ZK, McKitterick AC and Seed KD. 2017.  A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome. PLOS Genetics. 13: e1006838. (Link)

7. Box AM, McGuffie MJ, O’Hara BJ and Seed KD. 2016. Functional analysis of bacteriophage immunity through a type I-E CRISPR-Cas system in Vibrio cholerae and its application in bacteriophage genome engineering. Journal of Bacteriology. 198:578–590. (Link)

6. Dalia AB, Seed KD, Calderwood SB and Camilli A. 2015. A globally distributed mobile genetic element inhibits natural transformation of Vibrio choleraePNAS. 112:10485-90. (Link)

5. Seed KD. 2014. Battling phages: how bacteria defend against viral attack. PLoS Pathogens. 11(6):e1004847. (Link) [Review]

4. Seed KD, Yen M, Shapiro BJ, Hilaire IJ, Charles RC, Teng JE, Ivers LC, Boncy J, Harris JB and Camill A. 2014. Evolutionary consequences of intra-patient phage predation on microbial populations. eLife. 3:e03497. (Link)

     Notable Media coverage:

  • Research Highlight: Molloy S. 2014. In-house dining for phage. Nature Reviews Microbiology. 12 : 658. (Link)

3. Seed KD, Lazinski DW, Calderwood SB and Camill A. 2013. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature. 494:489-491. (Link) 

     Notable Media coverage:

  • News and Views: Villion M and Moineau S. 2013. Virology: Phages hijack a host’s defence. Nature. 494:433-434. (Link)

  • Research Highlight: Kåhrström CT. 2013. Phages level the playing field. Nature Reviews Microbiology. 11: 300-301. (Link)

  • News article: A Virus That Steals A Bacterium’s Immune System And Uses It As A Weapon. Popular Science, March 4, 2013. (Link)

  • News article: The virus that learns. National Geographic Phenomena Blog, February 27, 2013. (Link)

2. Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F and Camilli A. 2012. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathogens. 8:e1002917. (Link)

1. Seed KD, Bodi KL, Kropinski AM, Ackermann HW, Calderwood SB, Qadri F and Camilli A. 2011. Evidence of a dominant lineage of Vibrio cholerae-specific lytic bacteriophages shed by cholera patients over a 10-year period in Dhaka, Bangladesh. mBio. 2:e00334-10.(Link)

Complete list of publications generated by PubMed